
Phoneme Recognition Using the Encoder-decoder Framework

Israel Malkin
New York University

Center for Data Science
israelmalkin@nyu.edu

Peter Li
New York University

Center for Data Science
Peter.Li@nyu.edu

Abstract

Encoder-decoder models are a powerful class
of models that let us learn mappings from vari-
able length input sequences to variable length
output sequences. In this report, we investi-
gate the efficacy of Encoder-decoder systems
for the task of phoneme recognition.

1 Introduction

Deep Neural Networks are a family of machine
learning models that have demonstrated excellent re-
sults on a number of difficult tasks across a number
of domains including computer vision (Krizhevsky
et al., 2012), music information retrieval (Diele-
man et al., 2011), and genetics (Leung et al., 2014).
Usually, however, these models rely on inputs and
outputs of fixed size. For example, input images
for an object recognition system might always be
100 pixels × 100 pixels × 3 channels. Similarly,
the output will always be a fixed length vector that
might, for example, correspond to the probability of
each class.

For many problems, however, we cannot naturally
encode our input and output into data structures with
a fixed size. For example, translation can be viewed
as learning a mapping from one arbitrary length
sequence (source sentence) into another arbitrary
length sequence (target sentence). For these tasks,
researchers have recently proposed a new class of
models that can operate over variable length input
and outputs (Cho et al., 2014a). In the so called
Encoder-decoder family of models, one recurrent
neural network (RNN) is trained to encode the in-

put sequence and another RNN is trained to decode
the output of the encoder.

For our project, we investigate the efficacy of
Encoder-decoder systems for the task of phoneme
recognition. In this task, we take spectrogram repre-
sentations of speech audio as input to our model and
output phoneme sequences. In designing our exper-
iments, we hoped to understand the following:

• Does the attention mechanism improve model
performance? If so, how much?

• What is the effect of the size of the encoder and
decoder memory states?

• How do different representations affect model
performance?

2 Model

The basic unit of our RNNs is a Gated Recurrent
Unit (GRU) (Cho et al., 2014b). The memory state
of a GRU is determined by the following set of equa-
tions:

zt = σ(Wz,ht−1ht−1 +Wz,xxt + bz) (1)

rt = σ(Wr,ht−1ht−1 +Wr,xxt + br) (2)

h̃t = tanh(W̃rt,ht−1 [rt ∗ ht−1] + W̃xxt + b̃) (3)

ht = (1− zt) ∗ ht + zt ∗ h̃t (4)

For an arbitrary length input sequence X =
[x1, ..., xT ], an RNN with GRUs will compute H =
[h1, ..., hT ]



Figure 1: Schematic of Simple Encoder-decoder model. The

decoder considers only the last memory state of the encoder.

2.1 Encoder-decoder
An Encoder-decoder model is an architecture that
learns to encode a variable-length input sequence
into a fixed-length vector representation (typically
the last memory state, hT ) and then learns to decode
the fixed length vector into a variable-length output
sequence.

This model consists of two RNNs. One to en-
code the input sequence into a fixed length vector, C
and another to decode C into the output sequence.
The decoder learns a language model, but one that is
additionally conditioned on C. To accomplish this,
we use a slightly modified version of the GRU that
lets us condition our outputs on C. Note that for the
simpler model, the conditioning vector C is the last
memory state of the encoder RNN(HT in figure 1).

zt = σ(Wz,ht−1ht−1 +Wz,xxt +Wz,cC + bz) (5)

rt = σ(Wr,ht−1ht−1 +Wr,xxt +Wr,cC + br) (6)

h̃t = tanh(W̃rt,ht−1 [rt ∗ht−1] + W̃xxt + W̃cC + b̃)
(7)

ht = (1− zt) ∗ ht + zt ∗ h̃t (8)

At each time step, an affine combination of the
decoder output ,ht, the previous phoneme, yt−1, and
the current context, Ct, are all passed to a softmax
to obtain the the conditional probability distribution
over the target vocabulary, p(yt|ht, yt−1, Ct).

We show a schematic of this model in Figure 1.

2.2 Attention
The simple Encoder-decoder model described above
encodes a variable length input sequence into a

Figure 2: Schematic of Encoder-decoder model with attention.

The decoder is connected to the entire memory state history via

the attention mechanism.

fixed-length vector. Using this fixed-length vector,
we can train a decoder as a conditional language
model that expects this fixed-length vector. This
convenience, however, may come with a cost. In
(Cho et al., 2014a), researchers observed that the
performance of simple Encoder-decoder models de-
grade as the length of the input sequence grows (Cho
et al., 2015). Intuitively, this makes sense since the
limited capacity of the fixed-length memory state
can not store input from many time-steps back. A
naive approach would be to increase the size of the
memory state vector, but obviously this logic can
only be taken so far until the memory state vector
becomes too large.

The attention mechanism sidesteps the finite-
memory issue by generating a context set that is
comprised of all the memory states of the encoder
RNN. At each time step during decoding, the at-
tention mechanism will generate a glimpse,Gt , of
the context set that is passed to the conditional lan-
guage model as context. Compare this to the sim-
ple encoder-decoder model where the context for the
conditional language model is always the last mem-
ory state of the encoder. Additionally, our attention
model utilizes a bi-directional RNN to encode the
input speech data.

This model is displayed in figure 2, along with
equations 9-11.
Score

Scorej,t = W T tanh(ht−1, yt−1, Cj) (9)

Attention

aj,t = softmax(score1,t, . . . , scoreDimEnc,t)
(10)



Glimpse/Context for attention

Gt = AtC (11)

The model learns which parts of the context set
to “pay attention to” depending on the current state
of the decoder system. This enhanced access to the
entire context/memory states of the encoder comes
at the relatively cheap price of learning the scor-
ing/attention weights, as opposed to attempting to
encode the entire history of longer input sequences
via the final state of an extremely large fixed-length
vector. The one-hot phoneme input was passed
through an embedding before being fed into the de-
coder GRU. The initial state of the encoder GRUs
was set to a vector of zeros. In the simple model, the
initial state of the decoder was learned as a function
of the context vector. In the attention mode, the de-
coder was initialized with the average of the context
set.

3 Data

To train our models, we used the TIMIT cor-
pus which consists of 5.4 hours of audio record-
ings of 6300 read sentences. For each recording,
TIMIT provides word and phoneme level annota-
tions (Garofolo et al., 1993).

As input to our models, we used a time/frequency
representation of the original signal. We com-
puted the Mel-spectrograms using a 25ms asym-
metric Hann window and 10ms hops. For better
contrast, we took the logarithm to get log Mel-
spectrograms. Additionally, we computed another
representation that appends the first and second or-
der differences. This captures the speed and accel-
eration of the frequency changes and is a commonly
used feature in audio signal processing (especially
in processing Mel-frequency Cepstral Coefficients).

4 Experiments

4.1 Experimental Setup

To answer the questions posed in the introduction,
we ran experiments while varying the model ar-
chitecture, input feature type, and size of memory
states.

Specifically:

• Model Architecture

– simple GRU Encoder/ GRU decoder
– bi-directional GRU encoder/ GRU de-

coder

• Input

– log Mel-spectrogram, 40 frequency bins
– log Mel-spectrogram, 100 frequency bins
– log Mel-spectrogram (40) + ∆ + ∆2

(120 dimensions total)
– log Mel-spectrogram (100) + ∆ + ∆2

(300 dimensions total)

• memory State Size

– Encoder: 200 and 500
– Decoder: 200 and 500

Taking all possible combinations results in 32 dif-
ferent configurations.

4.2 Model Training

As is standard practice, we removed the SA sen-
tences from the corpus and used the standard TIMIT
train and test split. From the training data, we hold-
out 500 samples for validation. To combat the issue
of exploding gradients, the norm of the gradient was
clipped to 2, and optimization proceeded using RM-
SPROP (Tieleman and Hinton, 2012). Running on
a Titan X GPU, the smaller models without atten-
tion took approximately one day to converge while
the larger architectures with attention took around 3
days to converge.

Final evaluation was based on the phoneme error
rate (PER). To make the results comparable to past
work, we converted the TIMIT phonemes from 61
to 39 broader categories (Fernández et al., 2008).
The optimization problem of picking the most prob-
able output sequence was approximated using beam
search with a beam size of five.

We present the results of our experiments in Fig-
ures 3 and 4.

5 Discussion

In designing our experiments, we wanted to answer
the following three questions:



Model Architecture (40) Validation PER Test PER

GRU Encoder/ GRU Decoder
log Mel Spectrogram / log Mel Spectrogram + ∆ + ∆2

(200,200), (200,500), (500,200), (500,500) 100% 100%
Bi-directional GRU Encoder/ GRU Decoder + Attention

log Mel Spectrogram + ∆ + ∆2

200,200 78.55% 79.26%
200,500 77.62% 78.99%
500,200 80.42% 81.20%
500,500 79.92% 79.46%

log Mel Spectrogram
200,200 77.52% 81.62%
200,500 78.40% 81.72%
500,200 78.64% 80.98%
500,500 78.23% 81.23%

Figure 3: Experiment Results Using 40 Frequency Bins

Model Architecture(100) Validation PER Test PER

GRU Encoder/ GRU Decoder
log Mel Spectrogram / log Mel Spectrogram + ∆ + ∆2

(200,200), (200,500), (500,200), (500,500) 100% 100%
Bi-directional GRU Encoder/ GRU Decoder + Attention

log Mel Spectrogram + ∆ + ∆2

200,200 76.79% 78.02%
200,500 76.85% 78.07%
500,200 75.93% 77.72%
500,500 77.74% 79.01%

log Mel Spectrogram
200,200 79.13% 80.51%
200,500 80.01% 80.95%
500,200 79.70% 80.01%
500,500 75.78% 81.02%

Figure 4: Experiment Results Using 100 Frequency Bins



1. Does the attention mechanism improve model
performance? If so, how much?

2. What is the effect of the size of the encoder and
decoder memory states?

3. How do different representations affect model
performance?

Based on our results we would report that at-
tention makes a tremendous difference, while the
size of the memory states and the input representa-
tion do not affect performance too much. However,
it is unclear if we can address any of these ques-
tions with a high degree of confidence. The sim-
ple Encoder-decoder models failed to learn anything
and achieved 100% PER in all experiments. While it
is not unexpected that the Encoder-decoder models
would perform poorly, we did not expect 100% PER.
Investigating further, we see that during training the
optimization does not minimize the cost. The neg-
ative log-likelihood oscillates near the initial value
and training ends due to early stopping. We plot the
convergence of a typical simple Encoder-decoder
model in Figure 5. To rule out optimization prob-
lems, we also ran the experiment with AdaDelta.
Results were similar.

Figure 5: Typical Convergence of Model Without Attention.

These models fail to converge. Negative log-likelihood oscil-

lates around the starting value and training eventually ends due

to early stopping.

The experiments that used attention achieved
lower PER across all specifications. Further, the
models showed much better convergence. A typical
plot of NLL is show in Figure 6. Despite this, our
models achieved much higher PER than other deep
learning model such as (Hinton et al., 2012) and es-
pecially (Chorowski et al., 2015) and (Chorowski et

al., 2014). These model typically report a test PER
around 20% - 17% while our lowest PER was 77%.

Figure 6: Typical Convergence of Model With Attention. Mod-

els trained with attention exhibit much better convergence be-

haviour.

Comparing our model architectures with these
others, we find that the consistent difference is
the depth of our encoder. Even in their baseline
model, (Chorowski et al., 2015) uses a three layer
bi-directional RNN as the encoder.

In designing our experiments, we mainly wanted
to investigate the effects of attention, hidden state
sizes, and feature representation. For ease of train-
ing, we used a single layer encoder and a single layer
decoder. It seems, however, that a single layer en-
coder might not have enough capacity to learn a use-
ful representation of the spectrogram. As a result,
this prevented our other changes from making a dif-
ference as the effect of the weak encoder dominated.

6 Future Work

As a follow up to this analysis, we would like to
rerun these experiments with more expressive en-
coders. The obvious choice would be to use at least
two or three layers in the encoder. Also, given the
spatial nature of the input spectrograms, we would
also like to try using convolutional neural networks
as the encoder.

References
Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-

danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger



Schwenk, and Yoshua Bengio. 2014b. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Kyunghyun Cho, Aaron Courville, and Yoshua Bengio.
2015. Describing multimedia content using attention-
based encoder-decoder networks. Multimedia, IEEE
Transactions on, 17(11):1875–1886.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. 2014. End-to-end continuous speech
recognition using attention-based recurrent nn: First
results. arXiv preprint arXiv:1412.1602.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. arXiv
preprint arXiv:1506.07503.

Sander Dieleman, Philémon Brakel, and Benjamin
Schrauwen. 2011. Audio-based music classification
with a pretrained convolutional network. In ISMIR,
pages 669–674.

Santiago Fernández, Alex Graves, and Jürgen Schmidhu-
ber. 2008. Phoneme recognition in timit with blstm-
ctc. arXiv preprint arXiv:0804.3269.

John S Garofolo, Linguistic Data Consortium, et al.
1993. TIMIT: acoustic-phonetic continuous speech
corpus. Linguistic Data Consortium.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acous-
tic modeling in speech recognition: The shared views
of four research groups. Signal Processing Magazine,
IEEE, 29(6):82–97.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and
Brendan J Frey. 2014. Deep learning of the tissue-
regulated splicing code. Bioinformatics, 30(12):i121–
i129.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning, 4.


