
AN RNN MODEL FOR SINGLE CHANNEL SOURCE SEPARATION WITH ITERATIVE
SUBTRACTION

Peter Li1∗, Israel Malkin2, Tian Wang3, Kyunghyun Cho4, Juan Bello1

1New York University,2Butterfly Network, 3eBay

ABSTRACT

Single channel source separation is the problem of recover-
ing source components from a single channel mixture. It is
a fundamental task in signal processing with many applica-
tions. In this paper, we propose a source separation model
based on recurrent neural networks and a novel iterative sub-
traction architecture. We describe architectures and weight
sharing methods for estimating sources via masks and spec-
trum directly. Our approach achieves a 5 dB - 7 dB SDR
increase, 9.7 dB - 11.0 dB SIR increase, and 1.1 dB - 3.9 dB
SAR increase over a NMF baseline in a closed speaker set
evaluation. Further, we show that our proposed model is ro-
bust to additional noise and mixing conditions not seen during
model training.

Index Terms— Source Separation, Deep Learning

1. INTRODUCTION

Single channel source separation is the problem of recover-
ing source components from a single channel mixture. It is
a fundamental task in signal processing with many applica-
tions including robust ASR, speaker identification, and hear-
ing prothesis. Without prior information,however, this is an
under determined problem with an infinite number of solu-
tions. Data driven approaches attempt to learn a separation
model using data as prior information. For example, early
data driven approaches used non-negative matrix factorization
(NMF) and probabilistic latent semantic indexing (PLSI) to
factorize and separate a time-frequency representation of the
mixture using learned source basis vectors [1][2]. Fundamen-
tally, these rely on learning linear transformations to perform
separation. In recent years, deep learning approaches have
been proposed to leverage the ability of deep learning systems
to learn flexible, non-liner models. The development has gen-
erally fallen into two groups. Works such as [3] and [4] treat
source separation as a regression problem where the model
produces estimates of the individual sources. Generally, these
models take the mixture and output a pre-determined num-
ber of sources. Other methods treat separation as a clustering
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problem where the goal is to cluster time-frequency bins be-
longing to the same source together [5][6]. These methods
typically learn an embedding for each each time-frequency
bin and cluster this learned representation. These models are
highly flexible and can be use to produce multiple sources
(by requiring more clusters). See [7] for an in-depth survey
of deep learning methods for speech source separation.

In this paper, we propose a source separation model based
on recurrent neural networks and a novel iterative subtraction
architecture. This model allows us to train a regression based
deep learning system that is not limited to producing a pre-
determined number of outputs. We show that our model out-
performs a NMF baseline and generalizes on mixtures with
different mixture levels and SNR.

2. PROPOSED METHODS

For this work, we focus on the task of separating additive mix-
tures of N sources:.

y(t) =

N∑
i=1

xi(t) (1)

Given the mixed signal y(t), we wish to estimate the in-
dividual sources, xi(t). This work focuses on mixtures of
speech signals, but the methods discussed may be extended
to other signal types such as music or environmental sounds.

2.1. Model

For separation, we consider the time-frequency representation
of Equation 1. Let Y,Xi ∈ CF×T be the short-time Fourier
transform (STFT) of y(t) and xi(t) respectively. Assuming
additivity of α-spectrograms[8], we can decompose the com-
plex modulus of Y as:

|Y(t, f)|α ≈
N∑
i=1

|Xi(t, f)|α (2)

Empirical results in [8] show that α ≈ 1 best fits real-world
data. In this work, we assume additivity with α = 1.

We propose a method to separate the mixture via subtrac-
tion. We give an overview of the idea below and give detailed
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Fig. 1: Model Architecture. (a) and (b) shows an example for a three speaker mix. (c) shows the architecture of the separator.

descriptions in the following three sections. Our model pro-
cesses data sequentially on two levels:

1. Given a mixture spectrogram, we use a separator, fi, to
separate out one source spectrogram. We use a recur-
rent neural network (RNN) to process the spectrogram
sequentially. See section 2.4 for a detailed description.

2. To estimate multiple sources, we process the mixture
sequentially. Each separator takes in a mixture less the
estimated source from the preceding separator. See sec-
tion 2.2 and section 2.3 for two proposed models.

For any given model, there are two ways to specify the
separator weights. In one case, we have different separators
for each layer. We term this the speaker dependent (SD)
model since the separator is tied to its layer and the data it
receives. The benefit of this architecture, however, comes
when we force the separators to share weights. We term this
the speaker independent (SI) model since the separator is
now independent of its place in the architecture. The iterative
subtraction allows us to train a general purpose separator
that is more independent to characteristics of the mixture e.g.
speaker identity, gender, and number of sources.

2.2. Magnitude Spectrum Model

In our first model, the separator produces estimates of the
source spectrum directly.The initial input to the model is the
full mixture spectrum Y0 = |Y |. The ith source is then com-
puted using the following recurrence:

X̂i = fi(Yi|θi) (3)

Yi = Yi−1 − X̂i−1 (4)

Additionally, ε is the residual after the last estimated source
has been subtracted, ε = YN . This captures any part of the

original mixture spectrogram that was not output as part of
the source. See Figure 1a for an example for a 3 speaker mix.

For model training, we optimize the separator parameters
jointly to minimize the reconstruction loss and the norm of
the residual. λ controls the relative importance of the recon-
struction and residual loss.

minimize
θ1,...,θN

N∑
i

‖Xi − X̂i(θi)‖2F + λ‖ε‖2F (5)

To reconstruct the time domain signal, we take the inverse
short-time Fourier transform (ISTFT) using the estimated
magnitude spectrograms X̂i, and the mixture phase.

2.3. Soft-mask Model

In addition to estimating source magnitude spectrograms di-
rectly, we can also recover |Xi| by multiplying |Y | by a phase
adjusted soft mask Mi defined as:

Mi :=
|Xi|∑N
j=1 |Xj |

cos(φ) (6)

.
where φ is the difference between the mixture and source

phase. This adjustment accounts for the phase error when
reconstructing using the mixture phase and has been found to
lead to better SDR [9].

For masks, the sequential processing is slightly more
complex as we also need to maintain memory of previous
masks. As in the magnitude model, the initial input is the
full mixture spectrum Y0 = |Y |. Additionally, we intro-
duce a memory component that is initialized as the identity
mask, C0 = 1. The ith mask is computed with the following
recurrence:



M̃i = fi(Yi|θi) (7)

M̂i = M̃i � Ci (8)

Yi = Yi−1 � (1− M̃i−1) (9)

Ci = Ci−1 � M̃i−1 (10)

Here, M̃i is a local mask in the sense that it is used to
mask its input, Yi. In later layers, separators do not have
access to sources that were already subtracted so a separa-
tor cannot produce a global mask on |Y |. The memory, C,
remedies this by serving as a running mask of what has been
subtracted.Intuitively, Ci is the mask on |Y | to produce Yi. A
global mask can be recovered by Ci−1 � M̃i−1

The model is optimized in an analogous way to the mag-
nitude model, where ε = Cn is the residual mask.

minimize
θ1,...,θN

N∑
i

‖Mi − M̂i(θi)‖2F + λ‖ε‖2F (11)

To reconstruct the time domain signal, we take the inverse
short-time Fourier transform (ISTFT) using the estimated
magnitude spectrograms X̂i = |Y| � M̂i, and the mixture
phase.

2.4. Separator RNN

We consider spectrograms and masks as sequences of F -
dimensional vectors e.g., Y = (y1, ..., yT ). The source
separation problem can then be viewed as mapping a variable
length sequence (mixture) into another sequence of the same
length (source/mask). This is a natural task for recurrent neu-
ral networks (RNN) as they can handle variable length input
and they can flexibly model temporal patterns in the data.

For our separator,we use four layers of bidirectional RNN
with long short-term memory (LSTM) [10] units followed by
a single RNN with gated recurrent units (GRU) [11] that out-
puts vectors of dimension F .

During our experiments, we found that spectrograms/masks
output from the separator RNN could be further improved
(∼0.8 dB increase in SDR) with a post-processing network.
The post-processing network follows the architecture first
proposed in [12] and used for similar post-processing in [13].
See Table 1 for detailed description of the architectures and
model hyper-parameters.

3. EXPERIMENTS

In our experiments we examine the performance of our model
in three settings:new utterances, different mixture SNR, and
additional noise. As a proof on concept, our experiments are
run on a closed speaker set, i.e. both training and test data are
from the same set of speakers.

3.1. Data and Evaluation

We use speech samples from the TSP Speech Database[14].
We choose six speakers: three male {MA, MB, MC} and
three female {FA, FB, FC}. For each speaker, we use
a 70/10/20 split on utterances for train, validation, and test
splits. All audio signals are downsampled to 16 kHz. We use
a 1024-point STFT with 75% overlap and a Hann window.
Mixtures are created by mixing one male and one female ut-
terance at 0 dB. For evaluation we use three common metrics
proposed in [15]: source to interference ratio (SIR), source
to artifacts ratio (SAR) and source to distortion ratio (SDR).
These metrics measure the ratio in power of the clean source
to various components of the estimated source. Higher values
tend to represent higher separation quality. See [15] and [3]
for a more in depth discussion.

3.2. New Utterances

We fist evaluate the performance of our models on mixtures
of the test utterances mixed at 0 dB. We use a standard super-
vised NMF with KL divergence as a baseline. The separation
results are shown in Table 2.

SDR SIR SAR

Supervised NMF 5.20 7.35 10.13
Deep Attractor Network 12.75 19.00 14.10

Magnitude Spectrogram Model
Speaker Dependent 10.20 17.80 11.21
Speaker Independent 10.75 18.35 11.73

Soft-mask Model
Speaker Dependent 12.35 17.75 14.03
Speaker Independent 11.92 17.01 13.78

Table 2: Speech separation results. The mask model out per-
forms the magnitude model. Additionally, speaker dependent
and speaker independent models show similar performance.

We see that the mask models outperforms the magnitude
models and both groups outperform the NMF baseline. The
higher mask predictions may be because their predictions are
based on masked values of the mixture spectrogram. This
is much stronger prior information than the the spectrogram
model when needs to predict values from R+. Additionally,
we observe that the SI models performs on par with the SD
model in both the spectrogram and mask models despite only
having one separator. This means the single SI separator was
able to separate on both male and female voices. We also
include the performance of a pre-trained Deep Attractor Net-
work (DANet). The comparison is not entirely equal, since
DANet was trained on different data. We report the result to
represent the current state of the art.



Model Component Architecture and Hyper-parameters

Separator RNN 4 layers of bidirectional LSTM, hidden units: 500 (speaker dependent), 1000 (speaker independent)
GRU: hidden units: 513

Post-processing RNN 1-D Convolutional filter bank: kernel width = 1-16, 128 output channels per width, stride = 1, ReLU
Max Pool: stride = 1, width = 2
1-D Convolutional filter bank: width=3, 128 output channels, stride = 1 ReLU
1-D Convolutional filter bank: width=3, 128 output channels, stride = 1
Residual connection to input
Highway Net: 4 layers of fully connected layers, 128 units, ReLU
Bidirectional GRU: 128 hidden units, ReLU (magnitude), sigmoid (mask)

Table 1: Network Architectures and hyper-parameters. Batch normalization used between all convolution layers in the post-net.

3.3. Different SNR

Using the speaker independent mask model from the preced-
ing section, we next evaluate separation performance on test
mixtures where the sources are combined at different mixture
SNR (the difference in power between x1 and x2). The new
test mixture is defined as: y(t) = αx1(t) + x2(t) where α is
the gain that controls the relative loudness.
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Fig. 2: Speech separation results for different mixture SNR.
Separation quality is robust to different SNR.

From Figure 2, we see that the evaluation metrics vary
slightly through a range of mixture SNR from -5 dB to 5 dB.
This shows that our separator is robust to a range of mixing
even though the model was only trained on mixes at 0 dB.
This is consistent with the finding in the speech enhancement
literature where supervised speech enhancement algorithms
are not overly sensitive to differences in SNR. Wang posits
that this may be due to loudness differences that occur natu-
rally within an audio sample[7].

3.4. Noise

Next, we evaluate separation performance in the presence of
noise. Noisy mixtures are defined as: y(t) = x1(t)+ x2(t)+
e(t) where e ∼ N(0, σ) is Gaussian white noise and σ con-
trols the signal to noise ratio (SNR). Given the noisy mixture,
we evaluate separation performance against the clean sources

x1(t) and x2(t).
In Figure 3 we see that SDR and SAR decrease as SNR

decreases. Intuitively this makes sense since separation will
be harder as noise levels rise. Interestingly, we do not see
a complete collapse in performance, even though the models
were never trained on noisy mixes.
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Fig. 3: Speech separation results on noise mixtures.Up to
10 dB SNR, separation quality is relatively robust to added
noise. Beyond 10 dB separation performance decreases sub
linearly. However, separator performance does not collapse
even though it was trained on clean mixtures.

4. CONCLUSION

We propose a model for single channel source separation us-
ing recurrent neural networks and an iterative subtraction ar-
chitecture. We demonstrate the training of both speaker de-
pendent and independent models for mask and magnitude pre-
diction. We evaluate these models under a number of condi-
tions on a closed speaker set and show that they outperform a
NMF baseline and slightly lower than a pre-trained DANet.

Preliminary experiments on open speaker TSP data show
that our model has lower performance ( 8.1 dB SDR for a SI
model). In future work, we would like to explore model be-
havior on larger, open speaker data. Additionally, adversarial
training or different loss functions e.g. PIT loss may yield
better separation.
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