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ABSTRACT

Traditional methods to tackle many music information re-
trieval tasks typically follow a two-step architecture: feature
engineering followed by a simple learning algorithm. In
these ”shallow” architectures, feature engineering and learn-
ing are typically disjoint and unrelated. Additionally, feature
engineering is difficult, and typically depends on extensive
domain expertise.

In this paper, we present an application of convolutional
neural networks for the task of automatic musical instrument
identification. In this model, feature extraction and learning
algorithms are trained together in an end-to-end fashion. We
show that a convolutional neural network trained on raw audio
can achieve performance surpassing traditional methods that
rely on hand-crafted features.

Index Terms— convolutional neural networks, deep
learning, end-to-end learning, music information retrieval,
source identification,

1. INTRODUCTION

Computer audition is the general study of the systems and
methods necessary for audio understanding by a machine.
In a sense, computer audition concerns itself with the study
of designing computers that can “hear” as humans do. The
goal is a machine that can “organize what they hear; learn
names for recognizable objects, actions, events, places, musi-
cal styles, instruments, and speakers; and retrieve sounds by
reference to those names.” [1]

In this paper, we focus on the first two tasks. Given a
musical recording, how can we train a system to identify the
instruments that are present? We present an application of
deep learning for the task of automatic musical instrument
identification in polyphonic music. We show that an end-to-
end system using convolutional neural networks trained on
raw audio can surpasses traditional MIR models trained using
hand-crafted features.
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1.1. Relation to Previous Work

In a paper calling for the adoption of deep architectures in
MIR,[2] describe traditional MIR methods as follows:

The traditional approaches to these problems are
rather homogeneous, adopting a two-stage archi-
tecture of feature extraction and semantic inter-
pretation, e.g. classification, regression, cluster-
ing, similarity ranking, etc. Feature represen-
tations are predominantly hand-crafted,drawing
upon significant domain-knowledge from music
theory or psychoacoustics.

Since good features are hard to craft, much of the recent
research in the MIR community has concerned itself with the
semantic interpretation part of the problem i.e. training bet-
ter models given a set of standard audio features (e.g. Mel-
Frequency Cepstral Coefficients or chroma)[2].

In this paper, we depart from the traditional MIR ap-
proach. Using convolutional neural networks, we train a
model using raw audio as input. We utilize a deep architec-
ture where feature extraction and semantic interpretation can
both be learned from data directly.

This approach to audio signal processing has been ex-
plored before in speech processing e.g., [3] and musical audio
tagging [4]. However, to the best of our knowledge, this is the
first application of deep learning to source identification.

2. PROBLEM DEFINITION

Before going into the details of our work, we give a formal
definition of our task:

Given a section of audio x, we would like to predict a vector
y ∈ {0, 1}l where l is the total number of instruments and

yi =

{
1, if instrument i is in x
0, otherwise

We treat this as a multi-label classification problem where



a) Convolution b) Pooling c) Non-Linearity

Fig. 1. Common ConvNet Layers

Fig. 2. Sample ConvNet Architecture

each label corresponds to an instrument. A model should out-
put 1 if an instrument is present and 0 otherwise.

3. MODEL

Convolutional Neural Networks (CNN) [5] can be seen as
a trainable feature extractor coupled with a learning model.
Generally, they are know to be good at extracting high level
features that represent abstract concepts from the original
data. A typical model contains multiple layers of modules,
where each module performs a simple data transformation.
In Figure 1, we show a few common operations on a general
matrix input. In a convolution layer, a filter, whose weights
are learned, is convolved with its input by taking point-wise
multiplication and then summing the results. Pooling is a
down-sampling operation that combines nearby points. Non-
linearities are applied point wise. In Figure 2, we show a
sample model architecture. Each of the first two layers con-
tains a convolution, pooling, and non-linearity operation. The
final two layers are a fully connected neural network.

Hyper-parameters of the system include the number of
layers and feature maps, convolution filter size, pooling size
and which non-linear activation function to use. The choice
of activation functions usually include the sigmoid function,
hyperbolic tangent function and more recently Rectified Lin-
ear Unit (ReLU)[6].

Model Architecture

Our convolutional neural network contains three tempo-
ral convolutional layers (a convolution operation where the

height of the filter is the height of the input) with ReLU and
max pooling. These three layers are followed by two fully
connected layers with ReLU and Dropout on the first layer
and a sigmoid after the the second fully connected layer. This
gives us a 11× 1 vector ŷ where each ŷi ∈ [0, 1]. These pre-
dicted activations are compared to training activations using a
binary cross entropy loss function. The exact model Specifi-
cations are presented in Table 1.

Parameter

Convolution Feature Maps 1 256
Convolution Filter Size 1 3101
Maxpooling Stride Size 1 20
Maxpooling Size 1 40
Convolution Feature Maps 2 384
Convolution Filter Size 2 300
Maxpooling Size 2 30
Maxpooling Stride Size 2 20
Convolution Feature Maps 3 384
Convolution Filter Size 3 20
Maxpooling Size 3 8
Maxpooling Stride Size 3 4
Layer 4 Output Size 400
Final Output Size 11

Table 1. ConvNet Specifications



4. EXPERIMENTS

4.1. Data and Setup

We trained and evaluated our model using data from Me-
dleDB [7]. MedleyDB is a multitrack dataset of 122 anno-
tated musical recordings. For each song we have three types
of audio content: mix, stems, and raw audio. Mixed audio is
comprised of a set of stems and stems are comprised of a mix
of raw audio. Since MedleyDB was primarily created to sup-
port research on melody extraction, we had to create our own
labels for model training. In the follow sections, we outline
our procedure.

For each stem, we have annotations on instrument ac-
tivation that represent the confidence of whether or not the
instrument is active during that time frame. These annota-
tions were generated using a standard envelope following
technique on each stem, consisting of half-wave rectification,
compression, smoothing, and down-sampling. For additional
details see [7].

Dataset Split

To train our model, we sliced individual tracks into one
second, non-overlapping clips. 80% of the clips were used
for model training and the remaining 20% were reserved for
testing. When splitting the data, there were two main con-
siderations. First, we didn’t want to have labels that were in
the test set but not in the training set. Second, we didn’t want
to have clips belonging to the same track in both the test and
training sets.

To address both issues at the same time, we use the algo-
rithm in [8] to split the 122 mixed tracks into a training and
test set based on the instruments that appear in each track.
After the initial split, we cut each track into one second non-
overlapping clips. This gives us our final training and test
sets. Because tracks vary in length, after cutting into one
second clips, the training and test set have 21177 and 4985
clips respectively.

Label Generation

To train our model, we need labels indicating whether or
not an instrument appears in the entire audio clip. However,
the activation confidence scores from MedleyDB provide lo-
cal information i.e, activations at each point in time. To con-
vert this to a global label for the entire clip, we take the maxi-
mum of the moving average of the activation confidences. An
instrument is considered active in a clip as long as its aver-
age activation confidence exceeds a threshold over a particu-
lar window. For our experiment, we chose a windows length
of 100ms and a threshold of 0.5. Figure 3 shows an example
of this procedure.

The activation annotations cover 82 instrument. We
grouped these instruments into 70 categories. To simplify

Fig. 3. Label Generation Procedure

model training and to have a more balanced dataset for learn-
ing, we combined all categories appearing in less than 20
songs into an ‘OTHER’ category. This gives us 11 classes for
classification:

• electric bass
• acoustic guitar
• synthesizer
• drum set
• fx/processed sound
• voice

• violin
• piano
• distorted electric guitar
• clean electric guitar
• OTHER

4.2. CNN Training

Our CNN was trained using stochastic gradient descent with
a batch size of 16. To speed up training time, we transformed
inputs using global contrast normalization. This is a standard
preprocessing step and has been show to speed up training
time. [9].

4.3. Benchmarks

For comparison, we also ran tests using more traditional MIR
techniques. In the benchmarks, we use domain knowledge to
construct music related features. For each audio clip, we first
computed the Mel-frequency cepstral coefficients (MFCC)
along with the first and second order differences, MFCC ∆
and ∆2. These three matricies where stacked and modelled
using a Gaussian distribution [10].

 MFCC
MFCC∆
MFCC∆2

 =

 | |
m1 . . . mT

| |

 ,

where mi ∼ N(µ,Σ)

(µ,Σ) were used as features to train a random forest and
logistic regression.



Models Accuracy Exact Match Precision Recall F-micro F -macro

Audio + CNN 82.74% 25.78% 0.7560 0.6888 0.7208 0.6433
MFCC + Random Forest 82.13% 17.53% 0.7908 0.5400 0.6418 0.4471
MFCC + Logistic Regression 81.80% 18.17% 0.7457 0.5857 0.6561 0.4840
Predict Majority Class 70.37% 9.95% 0.5001 0.4602 0.4793 0.1801

Table 2. Experiment Results

4.4. Experiment Results

The results of our experiments are shown in Table 2. In addi-
tion to the random forest and logistic regression, we also pro-
vide a naive benchmark that always predicts the three most
common instruments in the training set. As seen, the Audio +
CNN model generally outperforms the baseline models.

5. DISCUSSION

Convolutional neural networks have recently show remark-
able results in a number of tasks. However, it is often times
difficult to intuitively understand what they are doing and why
they work. In this section, we make an attempt at examin-
ing the weights learned in the first convolutional layer. This
sections follows the procedures of previous works in training
CNN’s on audio waveforms and confirms previous findings.

Examining the filter weights learned in the first layer, we
see that the model does seem to learn a set of frequency se-
lective filters. In Figure 4, we plot the magnitude spectra of
each filter, sorted by dominant frequency. Similar to results
in [4] and [3], the first convolutional layer seems to learn an
auditory scale filter bank.

Fig. 4. Rescaled magnitude spectra sorted by dominant fre-
quency. The spectra of each filter was rescaled to [0,1] by
subtracting the minimum and dividing by the range.

In Figure 5, we show a sample of filters learned in the
first layer. As in [4] many of the learned filters are translated
versions of each other. This is not necessary surprising since
phase invariance is most likely difficult learn given our archi-
tecture.

Fig. 5. Sample of filters learned in the first layer.Filters were
low pass filtered to remove noise.

6. CONCLUSION AND FUTURE WORK

We present a convolutional neural network for instrument
identification. We show that an end-to-end deep learning
system can be trained to achieve performance in line with
(and sometimes exceeding) traditional methods that rely on
extensive domain knowledge.

In future work, we will investigate methods to further un-
derstand the transformations made by the CNN. Additionally,
we would like to explore different architecture that may be
able to learn phase and translation invariance.

Code

Code for this project can be found on
https://github.com/glennq/instrument-recognition.
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