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1 Introduction

In this report, we explore techniques for speech enhancement using matrix factorization. We focus on enhanc-
ing speech signals corrupted with non-stationary environmental noise. Formally, the problem is as follows:

Given observations, X s, of speech corrupted with additive noise,

Xnoisy (t) = Xspeech(t) + Xnoise (t) (])

we try to recover X peech. The goal is to recover a signal that has better perceptual quality compared to the
original noisy signal. This has uses in many applications including telecommunications, voice recognition, and
hearing aids [Benesty and Makino| [2005].

Preliminaries

Feature Representation

Matrix factorization methods for speech enhancement operate on time/frequency representations of audio sig-
nals. As a first step, we compute the short-time Fourier Transform (STFT) of our signal.

W = STFT(Xnoisy) 2)

Next, we compute the magnitude and phase of each entry in W:

M = |W|,P = angle(W) 3)

M is then used in our matrix factorization algorithms to produce an enhanced version, Menhanced - 10 recon-
struct a time domain signal, we use the inverse STFT proposed in|Griffin and Lim|[[1984]]. In this reconstruction,
we use the phase estimated from the original, noisy signal.

11025 _Ncusy Speech

+0dB 11025 B
BB : =
g
16 4B E =
24 d8 5 ¢
32 dB = H —
£ :
408 o -
48 dB
56 48
648
7248
80 4B

+0dB

=L
g = 8d8
F -16 dB
i -24dB

-32 dB
-40 dB
-48 dB
-56 dB
-64 dB
-12 dB
-80 dB

i
L
g

: T

AT
A A e
HE—

.; i i

Figure 1: Magnitude Spectrogram of Clean and Noisy Speech. Notice that there is significant overlap in speech
and noise frequencies. Because of this, simple filtering techniques are not adequate for speech enhancement



2 Methods

Matrix factorization methods for speech enhancement factor the spectrogram of a noisy signal, M as a product
of a dictionary matrix, D and a code matrix C. Next, entries of D and C are assigned to either speech or noise.

M =DC

4
= [Dspeecthoise] |:Cspeech:| @)

noise

The noise components are then discarded to get the enhanced signal:

Menhanced = Dspeech Cspeech (5)

In the following two sections, we present a survey of methods to first compute the factorization of M and then
assign dictionary atoms and codes to particular sources.

2.1 Unsupervised Speech Enhancement

Consider the case where we only have a single observed mixed audio, denoising has to be done in an unsuper-
vised fashion. We adopted a matrix factorization based method in this project to decompose the mixed signal
in the time-frequency domain and try to group the basis/atoms into speech and noise. We then reconstruct the
spectrogram using only the basis/atoms from the speech group.

Matrix factorization methods, especially non-negative matrix factorization, have been proved to be effective in
audio source separation tasks (Smaragdis et al.|[2014], Wilson et al.| [2008]]). We experiment three different
matrix decomposition methods on their abilities to reconstruct the original signals.

Non-negative Matrix Factorization. Non-negative matrix factorization is a method that solves the following
optimization problem:

minimize |M — DC|3
D,C
subject to D,C>0

D, C > 0 represents the elements in D, C are non-negative. Note that we use the squared Euclidean distance
here to measure the difference between the reconstructed matrix DC from the original matrix M. Other
popular options for the distance measure include the Kullback-Leibler (KL) divergence (Lee and Seung)) and
Itakura-Saito (IS) divergence (Fvotte et al.[[2009]). One can add Frobenius norm and element-wise L1 norm to
regularize and induce sparsity in both dictionary and code matrix.

Sparse PCA. Sparse PCA (Zou et al|[2006]) is an extension to conventional PCA. It tries to find principle
components that are linear combinations of a subset of the input variables which provides superior interpretabil-
ity. Compared to the sparse coding algorithm, the dictionary matrix is sparse whereas in sparse coding the code
matrix is sparse. In the setting of decomposition, the problem is formulated as follows:
S 1 2
minimize —||M — DC]||5 + \||DJ|1
D,C 2
subject to ICill2 = 1,Vi

where C;’s are the rows in the code matrix.

Dictionary Learning / Sparse Coding. Dictionary learning and sparse coding are actually two separate
processes to solve an unified problem.



1
minimize —||M — DC||2 + \||C||,
D,C 2

)

subject to ID;|l2 =1,Vi

where D;’s are the atoms (columns) in the dictionary matrix. We often refer to dictionary learning as the
process of finding the optimal dictionary matrix D and sparse coding as the process of encoding given the
dictionary matrix D. The element-wise L1 penalty term induces sparsity in the code matrix. In other words,
this model is best suited for problems where data can be encoded using only a small subset of atoms in the
dictionary.
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Figure 2: Diagram of the unsupervised approach

Basis/Activation Clustering After the decomposition of the spectrogram of the mixed signal, we need to
group the atoms in the dictionary and their corresponding activations in the code matrix into speech and noise.
To accomplish this, we decide to use clustering algorithms on the atoms/basis as well as the activations. Ap-
parently, this approach requires a strong assumption that the basis or the activations for speech and noise are
significantly different.

The ideal scenario is the atoms of the dictionary perfectly cluster into two groups, one corresponds to speech
and the other corresponds to noise. But this method breaks if atoms form clusters within speech or noise groups.
The number of clusters therefore is not restricted to two in our case. After k clusters are determined, we loop
through every combination of the k clusters and find the combination that produce the reconstruction with the
maximum signal-to-distortion ratio (SDR).

The diagram for the unsupervised approach is depicted in Figure[2] After the spectrogram is reconstructed, we
perform inverse Short-Time Fourier Transformation (ISTFT) to obtain a denoised speech.



2.2 ”’Semi-supervised” Speech Enhancement

In this second approach, we present a ’semi-supervised” method for speech enhancement. This closely follows
the approach described in|Schmidt et al.| [2007].

One weakness of purely unsupervised methods is that there is no good way to determine which dictionary
atoms belong to each source. Traditional, supervised methods in speech enhancement sidestep this problem
by learning Dyoise and Dgpeech On separated training speech and noise data. The problem is then simplified
to learning the code matrix, C. Unfortunately, this method typically relies on learning speaker dependent

Dspeech~

In the ”Semi-supervised” approach of |Schmidt et al.| [2007], the authors take an intermediate approach. The
authors present a speaker independent speech enhancement model where Dy,0ise 1S learned from training data,
but Dgpeech is not. The problem them becomes estimating Dgspeech, Cspeech, ahd Choise. Since Dpoise 15
fixed, we have no problem assigning assigning atoms and codes to their respective sources. The factorization is
computed using Non-negative Sparse Coding (NMF + sparsity promoting penalty on the codes) [Hoyer [2004].

Formally, we solve the following optimization problems:

1. Learn Dyise On training data

o 2
mlng:pze [Mgrain — DnC|l; + Z C;
ij
subjectto D,,C >0
2. Estimate Dg, Cg, and C,,

S C
i D:D,, C s

2
2 ij ij
subjectto Dy, Cs,Cp, >0

3 Experiments and Results

3.1 Data

For this project, we synthesized the mixed audio by combining speech signals from the TIMIT corpus (Garofolo
et al.|[[1993]]) with background noises collected from freesound.org. TIMIT contains recordings of 630
speakers reading ten phonetically rich sentences. Signal length range from 2s to 7s. Noise audio is a 30 min
long recording of the background noise in a large hall. To generate the noisy audio, we mix clean speech signals
with a random segment of noise of the same duration. The mixing weight is chosen such that we get a signal
to noise ratio of 5dB.

STFT were computed with the following specifications:

1. FFT window size: 2048
2. Stride: 512 (overlap of 0.75 window)
3. window function: asymmetric Hann window

Model performance was evaluated using signal to distortion ratio (SDR) (Vincent et al.| [2006]). This is a
measure of signal quality that measures ratio of the power of the clean signal to power of the noise contained
in the enhanced signal.

3.2 Experiment 1: Validity of Using Matrix Factorization Methods

To demonstrate that matrix factorization is a viable way to tackle speech enhancement task, we first evaluate
its ability to reconstruct clean speech and noise separately. It would be impossible to enhance the mixed audio
if clean speech itself cannot be reconstructed properly.


freesound.org

Method # Components [ A =0 A=0.1 A=0.3 A=1
8 11.22(0.88) 11.25(0.89) 11.24(0.90) 11.24(0.87)
NME 16 16.72 (1.57) 16.84(1.56) 16.69 (1.58) 16.57 (1.48)
32 24.12 (2.39)  24.18(2.28) 23.65(2.05) 21.99 (1.33)
64 34.63(3.67) 32.86(1.91) 29.40 (1.39) 23.34 (1.26)
8 9.98 (0.91) 10.73 (0.86) 10.70 (1.06) _ 9.39 (0.96)
16 14.46 (1.37)  15.67 (1.13) 14.67 (0.98) 11.94 (1.04)
Sparse PCA 32 20.15(4.43) 20.13(1.17) 17.98(0.83) 13.52(1.18)
64 32.88 (4.13)  23.01(0.71) 20.00 (0.81) 14.99 (1.34)
8 [1.01 (1.00) 11.39(0.96) 11.64(0.91) 11.58(0.88)
DL 16 1623 (1.28) 17.07 (1.57) 17.43(1.54) 16.60 (1.40)
L 32 22.92 (247) 2431(2.43) 24.10(1.92) 22.63(1.97)
64 3537 (6.40) 34.54 (3.30) 33.88 (3.46) 30.70 (2.37)

Table 1: Reconstruction signal-to-distortion ratios (SDR) for different number of components and sparsity
parameter. Both mean and standard deviation are reported. All methods are evaluated on the same 10 samples.
A is the sparsity parameter used in decomposition.

For clean speech, we decompose the unmixed speech signal in the time-frequency domain and reconstruct itself
from the learned atoms. Number of components, sparsity parameter are tuned for all three models. Each set of
hyper-parameter was experimented on the same 10 mixed audio samples and we report the mean and standard
error of the resulting SDRs. The results are reported in Table

From Table [I] we can conclude that the more dictionary components we use, the less sparsity we impose, the
higher SDR we get. This makes perfect sense in this “in-sample” experiment as imposing sparsity using an
L1 penalty term does not decrease the training reconstruction errors. However if the data is sparse-coded in
nature, dictionary learning can be more generalizable. We also observe a superior performance of dictionary
learning methods over sparse PCA and NMF when the number of components is large. Sparse PCA has a
significantly lower SDR when sparsity on the basis/atoms is imposed which indicates that the basis/atoms for
the spectrogram are not sparse in nature.

The purpose of this experiment is to validate that matrix decomposition methods are viable approaches to
reconstruct signals. Judging from the final SDRs, this assumption is true (even SDR=10 is a relatively clean
signal).

3.3 Experiment 2: Unsupervised Speech Enhancement

For the unsupervised approach, we use dictionary learning approach to perform decomposition because of its
superior reconstruction ability. Two different clustering methods, K-means and Spectral clustering are used
and compared in the basis clustering process. Different number of clusters from 5 to 12 are experimented.

As we do not know which cluster corresponds to speech and which to noise, every possible combinations of
the atom clusters are considered to reconstruct the original signal. We choose the best possible reconstruction
with respect to the SDR measure. The results are listed in Table



SDR Improvement
Number of Clusters | K-means Spectral Clustering
5 0.18 (0.32) 0.20 (0.38)
6 0.10 (0.17) 0.57 (0.90)
7 0.30 (0.48) 0.29 (0.52)
8 0.11 (0.20) 0.39 (0.62)
9 0.10 (0.22) 0.51 (0.69)
10 0.31 (0.47) 0.59 (0.69)
11 0.19 (0.35) 0.64 (0.93)
12 0.30 (0.45) 0.35 (0.45)

Table 2: Improvement in SDR for different number of clusters in the unsupervised approach. Mean and stan-
dard deviation are both reported.

From the results, we can see that pure unsupervised approach fails to give consistent improvements over the
baseline. In fact, one to three out of the ten samples have significant improvements on SDR (around 1.0-2.0)
whereas most other samples have no improvements. This is why we have a larger standard deviation than mean
improvement.

Spectral clustering works somewhat better than K-means. But both have unpredictable performances depending
on initialization and the sample at hand. In conclusion, pure unsupervised approach based on basis/activations
clustering is hard to make it perform consistently.

3.4 Experiment 3: Noise Reconstruction

In this experiment, we investigate whether we can actually use a pre-trained noise dictionary to reconstruct new
noise samples.

First a noise dictionary was trained on 30s of noise audio. Then this dictionary was used to encode 5s segments
of new noise.

Number of Dictionary Components | y =001 =01 ~=1
20 10.24 10.08 8.11
50 13.41 13.04 8.78
100 16.32 15.69 8.97

Table 3: Reconstruction signal-to-distortion ratios (SDR) for different number of components and sparsity
parameters, reconstructing noise using a pre-trained noise dictionary.

From these results, we see that we can reconstruct noise to a reasonable degree of accuracy using a pre-
trained dictionary. The power of our reconstructed signal is at least 8 dB higher than the power of the error.
Perceptually, these reconstructions sound reasonable.

3.5 Experiment 4: ”’Semi-supervised”” Speech Enhancement

In this experiment, we implement the ”Semi-supervised” speech enhancement model described in Section 2.2.
For this experiment, we vary the following parameters:

e number of noise components € {32, 64, 128}
e number of speech components € {32, 64, 128}
e v€{0.01,0.1,1}

e )\, €{0.01,0.1,1}



o )\ € {1

# Noise Components # Speech Components vy A | SDR Improvement

128 32 0.01 1 1.02 (0.15)
64 32 1 1 1.01 (0.09)
128 32 1 1 1.01 (0.07)
64 32 0.01 1 1.01 (0.09)
32 32 1 1 1.00 (0.08)
32 128 0.01 0.01 0.78 (0.07)
32 128 0.1 0.01 0.77 (0.12)
64 128 1 1 0.77 (0.13)
32 128 1 0.01 0.76 (0.06)
128 128 0.1 0.1 0.74 (0.11)

Table 4: Improvement in SDR (SDR(Enhanced Audio) - SDR(Noisy Audio)). Due to the high number of
parameter configurations, we report the top 5 and bottom 5 parameter configurations.

From Table ] we see that the ”Semi-supervised” methods does produce an enhanced signal. On average, the
top models have a 1dB improvement in SDR relative to the original noisy signal. Perceptually, the background
noise is noticeably softer, but far from completely removed. Although using different data, top published
models seem to achieve improvements between 5dB - 10dB.

Qualitatively, we see that the number of speech components has a big impact on model performance. Using
too many features significantly deteriorates SDR improvement. Intuitively, this makes sense since adding more
components might start to include atoms that also model noise. Additionally, we see that a high level of
regularization on the noise (\,,) helps performance.

4 Conclusion

In this report we explore unsupervised and semi-supervised methods for speech enhancement. Although, per-
formance is not high compared to supervised methods, these models do not rely on clean speech data (which
might be difficult to obtain). Through our experiments, we found the following:

e Matrix factorization methods have enough power to adequately reconstruct speech and noise signals.
Using as few as 20 dictionary components, we can reconstruct signals to reasonable fidelity
e Purely unsupervised speech enhancement using clustering of dictionary atoms is difficult.

e “Semi-supervised” speech enhancement provides a reasonable compromise between supervised and
unsupervised methods. Although enhancement is not as good as supervised methods, we can enhance
noisy signals when we only have previous knowledge about noise sources.

Implementation

Spectral features and inverse STFT were computed using Librosa | McFee et al.| [2015[]. NMF, Sparse PCA, and
Dictionary Learning were computed using scikit learn [Pedregosa et al.|[2011]. Non-negative Sparse Coding
was implement using the multiplicative update rule derived in |[Eggert and Korner| [2004]).
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